(0) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

subsets(Cons(x, xs)) → subsets[Ite][True][Let](Cons(x, xs), subsets(xs))
subsets(Nil) → Cons(Nil, Nil)
mapconsapp(x', Cons(x, xs), rest) → Cons(Cons(x', x), mapconsapp(x', xs, rest))
mapconsapp(x, Nil, rest) → rest
notEmpty(Cons(x, xs)) → True
notEmpty(Nil) → False
goal(xs) → subsets(xs)

The (relative) TRS S consists of the following rules:

subsets[Ite][True][Let](Cons(x, xs), subs) → mapconsapp(x, subs, subs)

Rewrite Strategy: INNERMOST

(1) RenamingProof (EQUIVALENT transformation)

Renamed function symbols to avoid clashes with predefined symbol.

(2) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

subsets(Cons(x, xs)) → subsets[Ite][True][Let](Cons(x, xs), subsets(xs))
subsets(Nil) → Cons(Nil, Nil)
mapconsapp(x', Cons(x, xs), rest) → Cons(Cons(x', x), mapconsapp(x', xs, rest))
mapconsapp(x, Nil, rest) → rest
notEmpty(Cons(x, xs)) → True
notEmpty(Nil) → False
goal(xs) → subsets(xs)

The (relative) TRS S consists of the following rules:

subsets[Ite][True][Let](Cons(x, xs), subs) → mapconsapp(x, subs, subs)

Rewrite Strategy: INNERMOST

(3) SlicingProof (LOWER BOUND(ID) transformation)

Sliced the following arguments:
Cons/0
mapconsapp/0

(4) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

subsets(Cons(xs)) → subsets[Ite][True][Let](Cons(xs), subsets(xs))
subsets(Nil) → Cons(Nil)
mapconsapp(Cons(xs), rest) → Cons(mapconsapp(xs, rest))
mapconsapp(Nil, rest) → rest
notEmpty(Cons(xs)) → True
notEmpty(Nil) → False
goal(xs) → subsets(xs)

The (relative) TRS S consists of the following rules:

subsets[Ite][True][Let](Cons(xs), subs) → mapconsapp(subs, subs)

Rewrite Strategy: INNERMOST

(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)

Infered types.

(6) Obligation:

Innermost TRS:
Rules:
subsets(Cons(xs)) → subsets[Ite][True][Let](Cons(xs), subsets(xs))
subsets(Nil) → Cons(Nil)
mapconsapp(Cons(xs), rest) → Cons(mapconsapp(xs, rest))
mapconsapp(Nil, rest) → rest
notEmpty(Cons(xs)) → True
notEmpty(Nil) → False
goal(xs) → subsets(xs)
subsets[Ite][True][Let](Cons(xs), subs) → mapconsapp(subs, subs)

Types:
subsets :: Cons:Nil → Cons:Nil
Cons :: Cons:Nil → Cons:Nil
subsets[Ite][True][Let] :: Cons:Nil → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
mapconsapp :: Cons:Nil → Cons:Nil → Cons:Nil
notEmpty :: Cons:Nil → True:False
True :: True:False
False :: True:False
goal :: Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
hole_True:False2_0 :: True:False
gen_Cons:Nil3_0 :: Nat → Cons:Nil

(7) OrderProof (LOWER BOUND(ID) transformation)

Heuristically decided to analyse the following defined symbols:
subsets, mapconsapp

(8) Obligation:

Innermost TRS:
Rules:
subsets(Cons(xs)) → subsets[Ite][True][Let](Cons(xs), subsets(xs))
subsets(Nil) → Cons(Nil)
mapconsapp(Cons(xs), rest) → Cons(mapconsapp(xs, rest))
mapconsapp(Nil, rest) → rest
notEmpty(Cons(xs)) → True
notEmpty(Nil) → False
goal(xs) → subsets(xs)
subsets[Ite][True][Let](Cons(xs), subs) → mapconsapp(subs, subs)

Types:
subsets :: Cons:Nil → Cons:Nil
Cons :: Cons:Nil → Cons:Nil
subsets[Ite][True][Let] :: Cons:Nil → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
mapconsapp :: Cons:Nil → Cons:Nil → Cons:Nil
notEmpty :: Cons:Nil → True:False
True :: True:False
False :: True:False
goal :: Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
hole_True:False2_0 :: True:False
gen_Cons:Nil3_0 :: Nat → Cons:Nil

Generator Equations:
gen_Cons:Nil3_0(0) ⇔ Nil
gen_Cons:Nil3_0(+(x, 1)) ⇔ Cons(gen_Cons:Nil3_0(x))

The following defined symbols remain to be analysed:
subsets, mapconsapp

(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
subsets(gen_Cons:Nil3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)

Induction Base:
subsets(gen_Cons:Nil3_0(+(1, 0)))

Induction Step:
subsets(gen_Cons:Nil3_0(+(1, +(n5_0, 1)))) →RΩ(1)
subsets[Ite][True][Let](Cons(gen_Cons:Nil3_0(+(1, n5_0))), subsets(gen_Cons:Nil3_0(+(1, n5_0)))) →IH
subsets[Ite][True][Let](Cons(gen_Cons:Nil3_0(+(1, n5_0))), *4_0)

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(10) Complex Obligation (BEST)

(11) Obligation:

Innermost TRS:
Rules:
subsets(Cons(xs)) → subsets[Ite][True][Let](Cons(xs), subsets(xs))
subsets(Nil) → Cons(Nil)
mapconsapp(Cons(xs), rest) → Cons(mapconsapp(xs, rest))
mapconsapp(Nil, rest) → rest
notEmpty(Cons(xs)) → True
notEmpty(Nil) → False
goal(xs) → subsets(xs)
subsets[Ite][True][Let](Cons(xs), subs) → mapconsapp(subs, subs)

Types:
subsets :: Cons:Nil → Cons:Nil
Cons :: Cons:Nil → Cons:Nil
subsets[Ite][True][Let] :: Cons:Nil → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
mapconsapp :: Cons:Nil → Cons:Nil → Cons:Nil
notEmpty :: Cons:Nil → True:False
True :: True:False
False :: True:False
goal :: Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
hole_True:False2_0 :: True:False
gen_Cons:Nil3_0 :: Nat → Cons:Nil

Lemmas:
subsets(gen_Cons:Nil3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)

Generator Equations:
gen_Cons:Nil3_0(0) ⇔ Nil
gen_Cons:Nil3_0(+(x, 1)) ⇔ Cons(gen_Cons:Nil3_0(x))

The following defined symbols remain to be analysed:
mapconsapp

(12) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
mapconsapp(gen_Cons:Nil3_0(n3503_0), gen_Cons:Nil3_0(b)) → gen_Cons:Nil3_0(+(n3503_0, b)), rt ∈ Ω(1 + n35030)

Induction Base:
mapconsapp(gen_Cons:Nil3_0(0), gen_Cons:Nil3_0(b)) →RΩ(1)
gen_Cons:Nil3_0(b)

Induction Step:
mapconsapp(gen_Cons:Nil3_0(+(n3503_0, 1)), gen_Cons:Nil3_0(b)) →RΩ(1)
Cons(mapconsapp(gen_Cons:Nil3_0(n3503_0), gen_Cons:Nil3_0(b))) →IH
Cons(gen_Cons:Nil3_0(+(b, c3504_0)))

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(13) Complex Obligation (BEST)

(14) Obligation:

Innermost TRS:
Rules:
subsets(Cons(xs)) → subsets[Ite][True][Let](Cons(xs), subsets(xs))
subsets(Nil) → Cons(Nil)
mapconsapp(Cons(xs), rest) → Cons(mapconsapp(xs, rest))
mapconsapp(Nil, rest) → rest
notEmpty(Cons(xs)) → True
notEmpty(Nil) → False
goal(xs) → subsets(xs)
subsets[Ite][True][Let](Cons(xs), subs) → mapconsapp(subs, subs)

Types:
subsets :: Cons:Nil → Cons:Nil
Cons :: Cons:Nil → Cons:Nil
subsets[Ite][True][Let] :: Cons:Nil → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
mapconsapp :: Cons:Nil → Cons:Nil → Cons:Nil
notEmpty :: Cons:Nil → True:False
True :: True:False
False :: True:False
goal :: Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
hole_True:False2_0 :: True:False
gen_Cons:Nil3_0 :: Nat → Cons:Nil

Lemmas:
subsets(gen_Cons:Nil3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
mapconsapp(gen_Cons:Nil3_0(n3503_0), gen_Cons:Nil3_0(b)) → gen_Cons:Nil3_0(+(n3503_0, b)), rt ∈ Ω(1 + n35030)

Generator Equations:
gen_Cons:Nil3_0(0) ⇔ Nil
gen_Cons:Nil3_0(+(x, 1)) ⇔ Cons(gen_Cons:Nil3_0(x))

No more defined symbols left to analyse.

(15) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
subsets(gen_Cons:Nil3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)

(16) BOUNDS(n^1, INF)

(17) Obligation:

Innermost TRS:
Rules:
subsets(Cons(xs)) → subsets[Ite][True][Let](Cons(xs), subsets(xs))
subsets(Nil) → Cons(Nil)
mapconsapp(Cons(xs), rest) → Cons(mapconsapp(xs, rest))
mapconsapp(Nil, rest) → rest
notEmpty(Cons(xs)) → True
notEmpty(Nil) → False
goal(xs) → subsets(xs)
subsets[Ite][True][Let](Cons(xs), subs) → mapconsapp(subs, subs)

Types:
subsets :: Cons:Nil → Cons:Nil
Cons :: Cons:Nil → Cons:Nil
subsets[Ite][True][Let] :: Cons:Nil → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
mapconsapp :: Cons:Nil → Cons:Nil → Cons:Nil
notEmpty :: Cons:Nil → True:False
True :: True:False
False :: True:False
goal :: Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
hole_True:False2_0 :: True:False
gen_Cons:Nil3_0 :: Nat → Cons:Nil

Lemmas:
subsets(gen_Cons:Nil3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
mapconsapp(gen_Cons:Nil3_0(n3503_0), gen_Cons:Nil3_0(b)) → gen_Cons:Nil3_0(+(n3503_0, b)), rt ∈ Ω(1 + n35030)

Generator Equations:
gen_Cons:Nil3_0(0) ⇔ Nil
gen_Cons:Nil3_0(+(x, 1)) ⇔ Cons(gen_Cons:Nil3_0(x))

No more defined symbols left to analyse.

(18) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
subsets(gen_Cons:Nil3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)

(19) BOUNDS(n^1, INF)

(20) Obligation:

Innermost TRS:
Rules:
subsets(Cons(xs)) → subsets[Ite][True][Let](Cons(xs), subsets(xs))
subsets(Nil) → Cons(Nil)
mapconsapp(Cons(xs), rest) → Cons(mapconsapp(xs, rest))
mapconsapp(Nil, rest) → rest
notEmpty(Cons(xs)) → True
notEmpty(Nil) → False
goal(xs) → subsets(xs)
subsets[Ite][True][Let](Cons(xs), subs) → mapconsapp(subs, subs)

Types:
subsets :: Cons:Nil → Cons:Nil
Cons :: Cons:Nil → Cons:Nil
subsets[Ite][True][Let] :: Cons:Nil → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
mapconsapp :: Cons:Nil → Cons:Nil → Cons:Nil
notEmpty :: Cons:Nil → True:False
True :: True:False
False :: True:False
goal :: Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
hole_True:False2_0 :: True:False
gen_Cons:Nil3_0 :: Nat → Cons:Nil

Lemmas:
subsets(gen_Cons:Nil3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)

Generator Equations:
gen_Cons:Nil3_0(0) ⇔ Nil
gen_Cons:Nil3_0(+(x, 1)) ⇔ Cons(gen_Cons:Nil3_0(x))

No more defined symbols left to analyse.

(21) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
subsets(gen_Cons:Nil3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)

(22) BOUNDS(n^1, INF)